Before we begin I have a comment. The great quantity of information packed into each chapter of your text can be overwhelming, particularly if you attempt to memorize each fact disconnected from the others. Unless you have a mind that can hold on to thousands of isolated bits of information (there are people who can) you will become quickly frustrated. What will help you retain information is to connect all those facts to one or two big ideas. As you work to understand the big ideas incorporate the facts. If you do this it will cause your brain to link the many facts to the one or two, easier to recall, big ideas. Once linked in this way the facts become easier to recall and understanding of the big ideas is more complete. A word of warning, it still takes work. Trust your intelligence, have fun learning, and work.
Now to chapter 7.
Like all chapters of this text, chapter 7 presents a couple primary concepts and a few secondary concepts. The primary concepts are the compartmentalization of the cell and the cytoskeleton. The secondary concepts include; how cells are studied, comparison if prokaryotic and eukaryotic cells, power generation, and the nature of the cell surface. Two of the secondary concepts, power generation and the cell surface are covered in more detail in later chapters. In this post I will begin a discussion on the primary concepts.
Essentially, what a cell does is separate the inside from the outside. This allows the development of an interior environment different from the exterior. Once this difference is established the potential for unique chemical interactions in the cell exists. This concept can be extended to the interior of the cell.
If you look at the structure of the cell you can see that the interior is compartmentalized. In fact there are many compartments (organelles); a nucleus where DNA is kept, the closely associated endoplasmic reticulum, golgi apparatus, mitochondria, chloroplasts, and various membrane-bound vesicles. The big idea is that each compartment has a different internal environment which allows it to perform unique chemical reactions thus giving the organelle its function.
The primary example is the association between the nuclear membrane, endoplasmic reticulum, golgi apparatus, and vesicles. Take some time to learn how information leaves the nucleus, is processed in the endoplasmic reticulum, the product then shipped to the golgi apparatus and modified, and finally released as a vesicle. Note different kinds of vesicles are produced and have different functions and destinations.
So take a look at your book and familiarize yourself with the endomembrane system. If you have questions, be sure to post it here. Also, so far, four of you have accepted my invitation to the blog – thanks! But if you are in contact with the any of the others in the class tell them to join! So let me hear your questions and comments and get the conversation going. I will be blogging all break.
Mr. Baker
No comments:
Post a Comment